Streamlined assessment of membrane permeability and its application to membrane engineering of Escherichia coli for octanoic acid tolerance

Author:

Santoscoy Miguel C1,Jarboe Laura R1

Affiliation:

1. 0000 0004 1936 7312 grid.34421.30 Department of Chemical and Biological Engineering Iowa State University 50011 Ames IA USA

Abstract

Abstract The economic viability of bio-production processes is often limited by damage to the microbial cell membrane and thus there is a demand for strategies to increase the robustness of the cell membrane. Damage to the microbial membrane is also a common mode of action by antibiotics. Membrane-impermeable DNA-binding dyes are often used to assess membrane integrity in conjunction with flow cytometry. We demonstrate that in situ assessment of the membrane permeability of E. coli to SYTOX Green is consistent with flow cytometry, with the benefit of lower experimental intensity, lower cost, and no need for a priori selection of sampling times. This method is demonstrated by the characterization of four membrane engineering strategies (deletion of aas, deletion of cfa, increased expression of cfa, and deletion of bhsA) for their effect on octanoic acid tolerance, with the finding that deletion of bhsA increased tolerance and substantially decreased membrane leakage.

Funder

National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3