Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069

Author:

Zhang Ji1,Wang Xiangjing1,Diao Jinna1,He Hairong1,Zhang Yuejing1,Xiang Wensheng1

Affiliation:

1. grid.412243.2 0000000417601136 College of Life Science Northeast Agricultural University 150030 Harbin People’s Republic of China

Abstract

Abstract Genome shuffling is an efficient approach for the rapid engineering of microbial strains with desirable industrial phenotypes. In this study, a strategy of incorporating streptomycin resistance screening into genome shuffling (GS-SR) was applied for rapid improvement of doramectin production by Streptomyces avermitilis NEAU1069. The starting mutant population was generated through treatment of the spores with N-methyl-N’-nitro-N-nitrosoguanidine and ultraviolet (UV) irradiation, respectively, and five mutants with higher productivity of doramectin were selected as starting strains for GS-SR. Finally, a genetically stable strain F4-137 was obtained and characterized to be able to yield 992 ± 4.4 mg/l doramectin in a shake flask, which was 7.3-fold and 11.2-fold higher than that of the starting strain UV-45 and initial strain NEAU1069, respectively. The doramectin yield by F4-137 in a 50-l fermentor reached 930.3 ± 3.8 mg/l. Furthermore, the factors associated with the improved doramectin yield were investigated and the results suggested that mutations in ribosomal protein S12 and the enhanced production of cyclohexanecarboxylic coenzyme A may contribute to the improved performance of the shuffled strains. The random amplified polymorphic DNA analysis showed a genetic diversity among the shuffled strains, which confirmed the occurrence of genome shuffling. In conclusion, our results demonstrated that GS-SR is a powerful method for enhancing the production of secondary metabolites in Streptomyces.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3