Biocatalytic conversion of aloeresin A to aloesin

Author:

Steenkamp Lucia1,Mathiba Kgama1,Steenkamp Paul1,Phehane Vuyisile2,Mitra Robin3,Heggie Steven4,Brady Dean1

Affiliation:

1. grid.7327.1 0000000406071766 Protein Technologies, CSIR Biosciences P.O. Box 395 0001 Pretoria South Africa

2. grid.428711.9 0000000121731003 Agricultural Research Council P.O. Box 8783 0001 Pretoria South Africa

3. Croda Enterprises Ltd Foundry Lane, Ditton WA8 8UB Widnes, Cheshire England, UK

4. grid.7445.2 0000000121138111 Department of Bioengineering Imperial College London 4.23, Royal School of Mines Building, South Kensington Campus SW7 2AZ London UK

Abstract

Abstract Leaf exudates from Aloe species, such as the Southern African Aloe ferox, are used in traditional medicines for both humans and livestock. This includes aloesin, a skin bleaching product that inhibits the synthesis of melanin. Aloesin, (a C-glycoside-5-methylchromone) can be released from aloeresin A, an ester of aloesin, through hydrolysis. The objective of the current study was to identify an enzymatic hydrolysis method for converting aloeresin A to aloesin, resulting in increased concentrations of aloesin in the aloe bitters extract. More than 70 commercially available hydrolytic enzymes were screened for the conversion of aloeresin A. An esterase (ESL001-02) from Diversa, a lipase (Novozym 388) and a protease (Aspergillus oryzae) preparation were identified during screening as being capable of providing conversion of pure aloeresin A, with the protease giving the best conversion (~100%). It was found that a contaminating enzyme in Novo 388 was responsible for the conversion of aloeresin A to aloesin. This contaminating enzyme, possibly a protease, was able to give almost complete conversion using crude aloe bitters extract, doubling the concentration of aloesin in aloe bitters extract via the hydrolysis of aloeresin A.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3