Membrane engineering via trans-unsaturated fatty acids production improves succinic acid production in Mannheimia succiniciproducens

Author:

Ahn Jung Ho1,Lee Jong An1,Bang Junho1,Lee Sang Yup1

Affiliation:

1. 0000 0001 2292 0500 grid.37172.30 Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury KAIST 291 Daehak-ro, Yuseong-gu 34141 Daejeon Republic of Korea

Abstract

Abstract Engineering of microorganisms to produce desired bio-products with high titer, yield, and productivity is often limited by product toxicity. This is also true for succinic acid (SA), a four carbon dicarboxylic acid of industrial importance. Acid products often cause product toxicity to cells through several different factors, membrane damage being one of the primary factors. In this study, cis–trans isomerase from Pseudomonas aeruginosa was expressed in Mannheimia succiniciproducens to produce trans-unsaturated fatty acid (TUFA) and to reinforce the cell membrane of M. succiniciproducens. The engineered strain showed significant decrease in membrane fluidity as production of TUFA enabled tight packing of fatty acids, which made cells to possess more rigid cell membrane. As a result, the membrane-engineered M. succiniciproducens strain showed higher tolerance toward SA and increased production of SA compared with the control strain without membrane engineering. The membrane engineering approach employed in this study will be useful for increasing tolerance to, and consequently enhancing production of acid products.

Funder

Ministry of Science and ICT

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3