Two-stage oxygen supply strategy based on energy metabolism analysis for improving acetic acid production by Acetobacter pasteurianus

Author:

Zheng Yu1,Chang Yangang1,Zhang Renkuan1,Song Jia1,Xu Ying1,Liu Jing1,Wang Min1

Affiliation:

1. 0000 0000 9735 6249 grid.413109.e State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China

Abstract

Abstract Oxygen acts as the electron acceptor to oxidize ethanol by acetic acid bacteria during acetic acid fermentation. In this study, the energy release rate from ethanol and glucose under different aerate rate were compared, and the relationship between energy metabolism and acetic acid fermentation was analyzed. The results imply that proper oxygen supply can maintain the reasonable energy metabolism and cell tolerance to improve the acetic acid fermentation. Further, the transcriptions of genes that involve in the ethanol oxidation, TCA cycle, ATP synthesis and tolerance protein expression were analyzed to outline the effect of oxygen supply on cell metabolism of Acetobacter pasteurianus. Under the direction of energy metabolism framework a rational two-stage oxygen supply strategy was established to release the power consumption and substrates volatilization during acetic acid fermentation. As a result, the acetic acid production rate of 1.86 g/L/h was obtained, which were 20.78% higher than that of 0.1 vvm one-stage aerate rate. And the final acetic acid concentration and the stoichiometric yield were 88.5 g/L and 94.1%, respectively, which were 84.6 g/L and 89.5% for 0.15 vvm one-stage aerate rate.

Funder

Innovative Research Team of Tianjin Municipal Education Commission

National Natural Science Foundation of China

National Key R&D Program of China

Tianjin Municipal Science and Technology Commission

Rural Affairs Committee of Tianjin

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3