Affiliation:
1. grid.413106.1 0000000098896335 State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing People’s Republic of China
Abstract
Abstract
Paclitaxel content in yew tree is extremely low, causing a worldwide shortage of this important anticancer drug. Yew tree can also produce abundant 7-β-xylosyl-10-deacetyltaxol that can be bio-converted into 10-deacetyltaxol for semi-synthesis of paclitaxel. However, the bio-conversion by the screened natural microorganisms was inefficient. We have constructed the recombinant yeast with a glycoside hydrolase gene from Lentinula edodes and explored the bioconversion. Based on previously established reaction conditions, the bioconversion of 7-β-xylosyl-10-deacetyltaxol or its extract was further optimized and scaled up with the engineered yeast harvested from 200-L scale high-cell-density fermentation. The optimization included the freeze-dried cell amount, dimethyl sulfoxide concentration, addition of 0.5 % antifoam supplement, and substrate concentration. A 93–95 % bioconversion and 83 % bioconversion of 10 and 15 g/L 7-β-xylosyltaxanes in 10 L reaction volume were achieved, respectively. The yield of 10-deacetyltaxol reached 10.58 g/L in 1 L volume with 15 g/L 7-β-xylosyl-10-deacetyltaxol. The conversion efficiencies were not only much higher than those of other reports and our previous work, but also realized in 10 L reaction volume. A pilot-scale product purification was also established. Our study bridges the gap between the basic research and commercial utilization of 7-β-xylosyl-10-deacetyltaxol for the industrial production of semi-synthetic paclitaxel.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献