A comprehensive analysis of the effects of the main component enzymes of cellulase derived from Trichoderma reesei on biomass saccharification

Author:

Kawai Tetsushi1,Nakazawa Hikaru2,Ida Noriko1,Okada Hirofumi2,Ogasawara Wataru2,Morikawa Yasushi1,Kobayashi Yoshinori1

Affiliation:

1. Japan Bioindustry Association AIST Tsukuba Central 6, 1-1-1 Higashi 305-8566 Tsukuba Ibaraki Japan

2. grid.260427.5 0000000106712234 Department of Bioengineering Nagaoka University of Technology 1603-1 Kamitomioka 940-2188 Nagaoka Japan

Abstract

Abstract The aim of this study was a comprehensive analysis of the effects of the component enzymes of cellulase derived from Trichoderma reesei strain PC-3-7 on biomass saccharification. We used cellulases with deleted CBH I, CBH II, or EG I, which contain all other component enzymes, for saccharification of differently pretreated biomasses of rice straw, Erianthus, eucalyptus, and Japanese cedar. We found that CBH I was the most effective in saccharification of all pretreated cellulosic biomasses, although the effect was weaker in saccharification of sulfuric acid- and hydrothermally pretreated rice straw than of others; CBH II was more effective for rice straw than for eucalyptus, and was the most effective at the early stages of biomass degradation; EG I had little effect on pretreated biomasses, in particular, it had no effect on steam-exploded Japanese cedar. Thus, the effects of the main component enzymes depend on the biomass source and pretreatment. These findings will likely help to improve cellulase for industrial use.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3