Affiliation:
1. grid.258151.a 0000000107081323 School of Pharmaceutical Science Jiangnan University 1800 Lihu Avenue 214122 Wuxi People’s Republic of China
2. grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
Abstract
Abstract
Dihydroxylation of dehydroepiandrosterone (DHEA) is an essential step in the synthesis of many important pharmaceutical intermediates. However, the solution to the problem of low biohydroxylation conversion in the biotransformation of DHEA has yet to be found. The effects of natural oils on the course of dihydroxylation of DHEA to 3β,7α,15α-trihydroxy-5-androsten-17-one (7α,15α-diOH-DHEA) were studied. With rapeseed oil (2 %, v/v) addition, the bioconversion efficiency was improved, and the 7α,15α-diOH-DHEA yield was increased by 40.8 % compared with that of the control at DHEA concentration of 8.0 g/L. Meantime, the ratio of 7α,15α-diOH-DHEA to 7α-OH-DHEA was also increased by 4.5 times in the rapeseed oil-containing system. To explain the mechanism underlying the increase of 7α,15α-diOH-DHEA yield, the effects of rapeseed oil on the pH of the bioconversion system, the cell growth and integrity of Gibberella intermedia CA3-1, as well as the membrane composition were systematically studied. The addition of rapeseed oil enhanced the substrate dispersion and maintained the pH of the system during bioconversion. Cells grew better with favorable integrity. The fatty acid profile of G. intermedia cells revealed that rapeseed oil changed the cell membrane composition and improved cell membrane permeability for lipophilic substrates.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献