Growth retardation of Escherichia coli by artificial increase of intracellular ATP

Author:

Na Yoon-Ah1,Lee Joo-Young1,Bang Weon-Jeong1,Lee Hyo Jung1,Choi Su-In1,Kwon Soon-Kyeong2,Jung Kwang-Hwan3,Kim Jihyun F2,Kim Pil1

Affiliation:

1. grid.411947.e 0000000404704224 Department of Biotechnology The Catholic University of Korea 420-743 Bucheon Gyeonggi Korea

2. grid.15444.30 0000000404705454 Department of Systems Biology Yonsei University 120-749 Seoul Korea

3. grid.263736.5 0000000102865954 Department of Life Science Sogang University 121-742 Seoul Korea

Abstract

Abstract Overexpression of phosphoenolpyruvate carboxykinase (PCK) was reported to cause the harboring of higher intracellular ATP concentration in Escherichia coli, accompanied with a slower growth rate. For systematic determination of the relationship between the artificial increase of ATP and growth retardation, PCKWT enzyme was directly evolved in vitro and further overexpressed. The evolved PCK67 showed a 60 % greater catalytic efficiency than that of PCKWT. Consequently, the PCK67-overexpressing E. coli showed the highest ATP concentration at the log phase of 1.45 μmol/gcell, with the slowest growth rate of 0.66 h−1, while the PCKWT-overexpressing cells displayed 1.00 μmol/gcell ATP concentration with the growth rate of 0.84 h−1 and the control had 0.28 μmol/gcell with 1.03 h−1. To find a plausible reason, PCK-overexpressing cells in a steady state during chemostat growth were applied to monitor intracellular reactive oxygen species (ROS). Higher amount of intracellular ROS were observed as the ATP levels increased. To confirm the hypothesis of slower growth rate without perturbation of the carbon flux by PCK-overexpression, phototrophic Gloeobacter rhodopsin (GR) was expressed. The GR-expressing strain under illumination harbored 81 % more ATP concentration along with 82 % higher ROS, with a 54 % slower maximum growth rate than the control, while both the GR-expressing strain under dark and dicarboxylate transporter (a control membrane protein)-expressing strain showed a lower ATP and increased ROS, and slower growth rate. Regardless of carbon flux changes, the artificial ATP increase was related to the ROS increase and it was reciprocally correlated to the maximum growth rate. To verify that the accumulated intracellular ROS were responsible for the growth retardation, glutathione was added to the medium to reduce the ROS. As a result, the growth retardation was restored by the addition of 0.1 mM glutathione. Anaerobic culture even enabled the artificial ATP-increased E. coli to grow faster than control. Collectively, it was concluded that artificial ATP increases inhibit the growth of E. coli due to the overproduction of ROS.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3