Combining metabolic flux analysis and adaptive evolution to enhance lipase production in Bacillus subtilis

Author:

Yuan Kai1,Song Ping12,Li Shuang1,Gao Song3,Wen Jianping2,Huang He4

Affiliation:

1. 0000 0000 9389 5210 grid.412022.7 Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing China

2. 0000 0004 1761 2484 grid.33763.32 Department Biochemical Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China

3. 0000 0004 1800 0658 grid.443480.f Jiangsu Key Laboratory of Marine Bioresources and Environment Huaihai Institute of Technology 222005 Lianyungang China

4. 0000 0000 9389 5210 grid.412022.7 School of Pharmaceutical Sciences Nanjing Tech University 211816 Nanjing China

Abstract

Abstract Metabolic fluxes during lipase production by Bacillus subtilis CICC 20034 in synthetic medium were studied using metabolic flux analysis (MFA). The MFA showed that lipase production was dependent on, and coupled to the tributyrin uptake rate, formation of biomass, lactate, ATP, as well as amino acids from the aspartate and glutamate family. Using tributyrin as the sole carbon source, an adaptive evolution strategy was applied to increase the tributyrin uptake rate. B. subtilis SPZ1 was obtained from CICC 20034 by adaptive evolution over 1000 generations of growth-based selection. The tributyrin consumption rate of strain SPZ1 reached 0.89 g/(L·h) which was 1.9-fold higher than that of the original strain. The MFA indicated that the 212% increase of tributyrin uptake flux contributed to the 556% increase of lipase flux. Consequently, the lipase activity (0.65 U/mL) of strain SPZ1 was 1.9-fold higher than that of the original strain. This was the highest lipase activity obtained by fermentation in synthetic medium reported for Bacillus strains. In complex culture medium, lipase activity of SPZ1 reached 3.3 U/mL.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Natural Science Fund for Colleges and Universities in Jiangsu Province

Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3