Affiliation:
1. 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
2. 0000 0001 0708 1323 grid.258151.a Laboratory of Pharmaceutical Engineering, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu Province People’s Republic of China
3. 0000 0001 2285 7943 grid.261331.4 Department of Chemical and Biomolecular Engineering The Ohio State University 43210 Columbus OH USA
Abstract
Abstract
Cholesterol oxidase, steroid C27 monooxygenase and 3-ketosteroid-Δ1-dehydrogenase are key enzymes involved in microbial catabolism of sterols. Here, three isoenzymes of steroid C27 monooxygenase were firstly characterized from Mycobacterium neoaurum as the key enzyme in sterol C27-hydroxylation. Among these three isoenzymes, steroid C27 monooxygenase 2 exhibits the strongest function in sterol catabolism. To improve androst-1,4-diene-3,17-dione production, cholesterol oxidase, steroid C27 monooxygenase 2 and 3-ketosteroid-Δ1-dehydrogenase were coexpressed to strengthen the metabolic flux to androst-1,4-diene-3,17-dione, and 3-ketosteroid 9α-hydroxylase, which catalyzes the androst-1,4-diene-3,17-dione catabolism, was disrupted to block the androst-1,4-diene-3,17-dione degradation pathway in M. neoaurum JC-12. Finally, the recombinant strain JC-12S2-choM-ksdd/ΔkshA produced 20.1 g/L androst-1,4-diene-3,17-dione, which is the highest reported production with sterols as substrate. Therefore, this work is hopes to pave the way for efficient androst-1,4-diene-3,17-dione production through metabolic engineering.
Funder
National Natural Science Foundation of China
Postdoctoral Research Foundation of China
Jiangsu Province Post-doctoral Science Foundation
Jiangsu Province Science Fund for Distinguished Young Scholars
the 111 Project
Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献