Improved FK506 production by the precursors and product-tolerant mutant of Streptomyces tsukubaensis based on genome shuffling and dynamic fed-batch strategies

Author:

Du Wenjie1,Huang Di2,Xia Menglei1,Wen Jianping134,Huang Ming5

Affiliation:

1. grid.33763.32 0000000417612484 Department of Biological Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China

2. grid.216938.7 0000000098787032 TEDA School of Biological Sciences and Biotechnology Nankai University, TEDA 300457 Tianjin China

3. grid.419897.a 000000040369313X Key Laboratory of Systems Bioengineering Ministry of Education 300072 Tianjin China

4. grid.33763.32 0000000417612484 Collaborative Innovation Center of Chemical Science and Engineering 300072 Tianjin China

5. grid.30055.33 0000000092477930 CORA Dalian University of Technology 116024 Dalian China

Abstract

Abstract FK506, a secondary metabolite produced by Streptomyces tsukubaensis, is well known for its immunosuppressant properties to prevent rejection of transplanted organs and treat autoimmune diseases. However, the low titer of FK506 in the original producer strain limits the further industrialization efforts and restricts its clinical applications. To address this issue, a highly efficient method combined genome shuffling and dynamic fed-batch strategies was systematically performed in this work. Firstly, after five rounds of genome shuffling based on precursors and product resistances, a higher yielding strain TJ-P325 was successfully acquired, whose production reached 365.6 mg/L, 11-fold increase compared with the original strain. Then, the possible mechanism of different production capabilities between TJ-P325 and the wild type was explored through comparative gene expression analysis of key genes. Results showed that the transcription level of key genes was altered significantly in the mutant. Moreover, precursors addition enhanced the FK506 production by 28 %, as well as reduced the by-products biosynthesis. Finally, the disodium malonate and disodium methylmalonate dynamic fed-batch strategies dramatically led to the production of 514.5 mg/L in a 7.5-L bioreactor. These results demonstrated that genome shuffling and dynamic fed-batch strategies could be successfully applied to generate high-yield strains with value-added natural products during industrial microbial fermentation.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3