Affiliation:
1. grid.49100.3c 0000000107424007 Department of Chemical Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
2. grid.49100.3c 0000000107424007 School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
Abstract
Abstract
Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.
Funder
National Research Foundation of Korea
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献