Affiliation:
1. 0000 0001 2163 4895 grid.28056.39 State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
2. 0000 0001 2163 4895 grid.28056.39 School of Biotechnology East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
3. Shanghai Collaborative Innovation Center for Biomanufacturing 130 Meilong Road 200237 Shanghai China
Abstract
Abstract
High oxygen consumption and heat release caused by methanol catabolism usually bring difficulties to industrial scale-up and cost for protein expression driven by methanol-induced AOX1 promoter in Pichia pastoris. Here, reduced methanol feeding levels were investigated for expression of insulin precursor in a trans-acting elements engineered P. pastoris strain MF1-IP. Insulin precursor expression level reached 6.69 g/(L supernatant) at the methanol feeding rate of 6.67 mL/(h·L broth), which was 59% higher than that in the wild-type strain WT-IP at the methanol feeding rate of 12 mL/(h·L broth). Correspondingly, the insulin precursor expression level in fermentation broth and maximum specific insulin precursor production rate was 137 and 77% higher than the WT-IP, respectively. However, oxygen consumption and heat evolution were reduced, and the highest oxygen consumption rate and heat evolution rate of the MF1-IP were 18.0 and 37.7% lower than the WT-IP, respectively.
Funder
Shanghai Science and Technology Innovation Action Plan
Fundamental Research Funds for the Central Universities
National Special Fund for State Key Laboratory of Bioreactor Engineering
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献