Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance l-leucine production

Author:

Wang Ying-Yu1,Shi Ke12,Chen Peidong2,Zhang Feng1,Xu Jian-Zhong1,Zhang Wei-Guo1

Affiliation:

1. grid.258151.a 0000 0001 0708 1323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800# Lihu Road 214122 WuXi People’s Republic of China

2. Wuxi COFCO Engineering and Technology Co., Ltd 186# Huihe Road 214035 WuXi People’s Republic of China

Abstract

Abstract l-Leucine is an essential amino acid that has wide and expanding applications in the industry. It is currently fast-growing market demand that provides a powerful impetus to further increase its bioconversion productivity and production stability. In this study, we rationally engineered the metabolic flux from pyruvate to l-leucine synthesis in Corynebacterium glutamicum to enhance both pyruvate availability and l-leucine synthesis. First, the pyc (encoding pyruvate carboxylase) and avtA (encoding alanine-valine aminotransferase) genes were deleted to weaken the metabolic flux of the tricarboxylic acid cycle and reduce the competitive consumption of pyruvate. Next, the transcriptional level of the alaT gene (encoding alanine aminotransferase) was down regulated by inserting a terminator to balance l-leucine production and cell growth. Subsequently, the genes involved in l-leucine biosynthesis were overexpressed by replacing the native promoters PleuA and PilvBNC of the leuA gene and ilvBNC operon, respectively, with the promoter Ptuf of eftu (encoding elongation factor Tu) and using a shuttle expression vector. The resulting strain WL-14 produced 28.47 ± 0.36 g/L l-leucine in shake flask fermentation.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

State Administration for Science, Technology and Industry for National Defense

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3