Affiliation:
1. grid.266673.0 0000 0001 2177 1144 Department of Chemical, Biochemical and Environmental Engineering University of Maryland, Baltimore County 21250 Baltimore MD USA
2. grid.411872.9 0000 0001 2087 2250 Department of Agronomy and Plant Breeding University of Guilan Rasht Islamic Republic of Iran
Abstract
Abstract
Yarrowia lipolytica is an oleaginous yeast that has been substantially engineered for production of oleochemicals and drop-in transportation fuels. The unique acetyl-CoA/malonyl-CoA supply mode along with the versatile carbon-utilization pathways makes this yeast a superior host to upgrade low-value carbons into high-value secondary metabolites and fatty acid-based chemicals. The expanded synthetic biology toolkits enabled us to explore a large portfolio of specialized metabolism beyond fatty acids and lipid-based chemicals. In this review, we will summarize the recent advances in genetic, omics, and computational tool development that enables us to streamline the genetic or genomic modification for Y. lipolytica. We will also summarize various metabolic engineering strategies to harness the endogenous acetyl-CoA/malonyl-CoA/HMG-CoA pathway for production of complex oleochemicals, polyols, terpenes, polyketides, and commodity chemicals. We envision that Y. lipolytica will be an excellent microbial chassis to expand nature’s biosynthetic capacity to produce plant secondary metabolites, industrially relevant oleochemicals, agrochemicals, commodity, and specialty chemicals and empower us to build a sustainable biorefinery platform that contributes to the prosperity of a bio-based economy in the future.
Funder
Bill and Melinda Gates Foundation
Division of Chemical, Bioengineering, Environmental, and Transport Systems
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献