New synergistic co-culture of Corylus avellana cells and Epicoccum nigrum for paclitaxel production

Author:

Salehi Mina1,Moieni Ahmad1,Safaie Naser2,Farhadi Siamak1

Affiliation:

1. 0000 0001 1781 3962 grid.412266.5 Department of Plant Breeding and Biotechnology, Faculty of Agriculture Tarbiat Modares University P.O. Box 14115-336 Tehran Iran

2. 0000 0001 1781 3962 grid.412266.5 Department of Plant Pathology, Faculty of Agriculture Tarbiat Modares University P.O. Box 14115-336 Tehran Iran

Abstract

Abstract Paclitaxel is a main impressive chemotherapeutic agent with unique mode of action and broad-spectrum activity against cancers. Hazel (Corylus avellana) is a paclitaxel-producing species through bioprospection. Endophytic fungi have significant roles in plant paclitaxel production. This study evaluated the effect of co-culture of C. avellana cells and paclitaxel-producing endophytic fungus, Epicoccum nigrum strain YEF2 and also the effect of elicitors derived from this fungal strain on paclitaxel production. The results clearly revealed that co-culture of C. avellana cells and E. nigrum was more effective than elicitation of C. avellana cells by only cell extract or culture filtrate of this fungal strain. Co-culture of C. avellana cells and E. nigrum surpassed monocultures in terms of paclitaxel production designating their synergistic interaction potential. Fungal inoculum amount, co-culture establishment time and co-culture period were important factors for achieving the maximum production of paclitaxel in this co-culture system. The highest total yield of paclitaxel (404.5 µg L−1) was produced in co-culture established on 13th day using 3.2% (v/v) of E. nigrum mycelium suspension, which was about 5.5 and 136.6 times that in control cultures of C. avellana cells and E. nigrum, respectively. This is the first report on positive effect of co-culture of paclitaxel-producing endophytic fungus and non-host plant cells for enhancing paclitaxel production. Graphical abstract

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3