Two-Step Parameter Estimation for Read Feature Models

Author:

Erhard FlorianORCID

Abstract

AbstractOver the last two decades, the field of molecular biology has witnessed a revolution due to the development of next generation sequencing (NGS) technologies. NGS enables researchers to routinely generate huge amounts of data that can be used to pursue a large variety of questions in diverse biological systems. The development of these techniques has propelled the emergence of a sub-discipline within computational biology that is concerned with developing methods and statistical models to derive quantitative information from the complex and often indirect data that are generated by NGS. Often, NGS analysis results in particular patterns per biological entity that can be exploited to estimate quantitative parameters of biological interest. Here, I define read feature models (RFMs) as a general framework for such data. RFMs entail global, genome-wide parameters as well as parameters per biological entity, suggesting a two-step procedure for parameter estimation. I describe the analysis of metabolic RNA labeling data as an example of an RFM and analyze and discuss the merits and shortcomings of the two-step estimation.

Funder

Deutsche Forschungsgemeinschaft

Universität Regensburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3