Multi-phase Fine-Tuning: A New Fine-Tuning Approach for Sign Language Recognition

Author:

Sarhan NohaORCID,Lauri Mikko,Frintrop Simone

Abstract

AbstractIn this paper, we propose multi-phase fine-tuning for tuning deep networks from typical object recognition to sign language recognition (SLR). It extends the successful idea of transfer learning by fine-tuning the network’s weights over several phases. Starting from the top of the network, layers are trained in phases by successively unfreezing layers for training. We apply this novel training approach to SLR, since in this application, training data is scarce and differs considerably from the datasets which are usually used for pre-training. Our experiments show that multi-phase fine-tuning can reach significantly better accuracy in fewer training epochs compared to previous fine-tuning techniques

Funder

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey on Gestures Translation System for Hearing Impaired People in Emergency Situation using Deep Learning Approach;2023 Second International Conference on Electronics and Renewable Systems (ICEARS);2023-03-02

2. A review on computational methods based automated sign language recognition system for hearing and speech impaired community;Concurrency and Computation: Practice and Experience;2023-03

3. Dynamic Pre-trained Models Layer Selection Using Filter-Weights Cosine Similarity;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023

4. Phuket Landmark Recognition using Fine-Tuned Convolutional Neural Network;2022 13th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3