Learning Description Logic Ontologies: Five Approaches. Where Do They Stand?

Author:

Ozaki AnaORCID

Abstract

AbstractThe quest for acquiring a formal representation of the knowledge of a domain of interest has attracted researchers with various backgrounds into a diverse field called ontology learning. We highlight classical machine learning and data mining approaches that have been proposed for (semi-)automating the creation of description logic (DL) ontologies. These are based on association rule mining, formal concept analysis, inductive logic programming, computational learning theory, and neural networks. We provide an overview of each approach and how it has been adapted for dealing with DL ontologies. Finally, we discuss the benefits and limitations of each of them for learning DL ontologies.

Funder

Free University of Bozen-Bolzano

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference49 articles.

1. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. SIGMOD 22(2):207–216

2. Angluin D (1988) Queries and concept learning. Mach Learn 2(4):319–342

3. Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P (eds) (2007) The description logic handbook: theory, implementation, and applications, 2nd edn. Cambridge University Press, Cambridge

4. Baader F, Distel F (2009) Exploring finite models in the description logic. In: ICFCA, pp 146–161

5. Baader F, Ganter B, Sertkaya B, Sattler U (2007) Completing description logic knowledge bases using formal concept analysis. In: IJCAI, pp 230–235

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural-symbolic BDI-Agent as a Multi-Context System: A case study with negotiating agent;Expert Systems with Applications;2024-03

2. Designing Reactive Route Change Rules with Human Factors in Mind: A UATM System Perspective;Lecture Notes in Networks and Systems;2024

3. Semiautomatic Design of Ontologies;Lecture Notes in Business Information Processing;2023-11-25

4. Chapter 21. Neuro-Symbolic Semantic Learning for Chemistry;Frontiers in Artificial Intelligence and Applications;2023-07-21

5. Interpretable ontology extension in chemistry;Semantic Web;2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3