Reconstructing Disease Histories in Huge Discrete State Spaces

Author:

Schill Rudolf,Klever Maren,Rupp Kevin,Hu Y. Linda,Lösch Andreas,Georg Peter,Pfahler Simon,Vocht Stefan,Hansch Stefan,Wettig Tilo,Grasedyck Lars,Spang Rainer

Abstract

AbstractMany progressive diseases develop unnoticed and insidiously at the beginning. This leads to an observational gap, since the first data on the disease can only be obtained after diagnosis. Mutual Hazard Networks address this gap by reconstructing latent disease dynamics. They model the disease as a Markov chain on the space of all possible combinations of progression events. This space can be huge: Given a set of $$n\ge 266$$ n 266 events, its size exceeds the number of atoms in the universe. Mutual Hazard Networks combine time-to-event modeling with generalized probabilistic graphical models, regularization, and modern numerical tensor formats to enable efficient calculations in large state spaces using compressed data formats. Here we review Mutual Hazard Networks and put them in the context of machine learning theory. We describe how the Mutual Hazard assumption leads to a compact parameterization of the models and show how modern tensor formats allow for efficient computations in large state spaces. Finally, we show how Mutual Hazard Networks reconstruct the most likely history of glioblastomas.

Funder

Deutsche Forschungsgemeinschaft

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3