Abstract
AbstractDuring the prosecution process the primary objective is to prove criminal offences to the correct perpetrator to convict them with legal effect. However, in reality this may often be difficult to achieve. Suppose a suspect has been identified and is accused of a bank robbery. Due to the location of the crime, it can be assumed that there is sufficient image and video surveillance footage available, having recorded the perpetrator at the crime scene. Depending on the surveillance system used, there could be even high-resolution material available. In short, optimal conditions seem to be in place for further investigations, especially as far as the identification of the perpetrator and the collection of evidence of their participation in the crime are concerned. However, perpetrators usually act using some kind of concealment to hide their identity. In most cases, they disguise their faces and even their gait. Conventional investigation approaches and methods such as facial recognition and gait analysis then quickly reach their limits. For this reason, an approach based on anthropometric person-specific digital skeletons, so-called rigs, that is being researched by the COMBI research project is presented in this publication. Using these rigs, it should be possible to assign known identities, comparable to suspects, to unknown identities, comparable to perpetrators. The aim of the COMBI research project is to study the anthropometric pattern as a biometric identifier as well as to make it feasible for the standardised application in the taking of evidence by the police and prosecution. The approach is intended to present computer-aided opportunities for the identification of perpetrators that can support already established procedures.
Funder
Hochschule Mittweida, University of Applied Sciences
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. An W, Yu S, Makihara Y, Wu X, Xu C, Yu Y, Liao R, Yagi Y (2020) Performance evaluation of model-based gait on multi-view very large population database with pose sequences. IEEE Trans Biom Behav Identity Sci 2(4):421–430
2. Andriluka M, Pishchulin L, Gehler P, Schiele B (2014) 2D human pose estimation: new benchmark and state of the art analysis. In: IEEE conference on computer vision and pattern recognition. San Diego, CA, USA, pp 3686–3693. https://doi.org/10.1109/CVPR.2014.471
3. Becker S, Spranger M, Heinke F, Grunert S, Labudde D (2018) A comprehensive framework for high resolution image-based 3d modeling and documentation of crime scenes and disaster sites. Int J Adv Syst Meas 11:1–12
4. Brito A (2007) Blender 3D. Novatec, New York
5. Cao Z, Hidalgo G, Simon T, Wei SE, Sheikh Y (2021) OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans Pattern Anal Mach Intell 43(1):172–186. https://doi.org/10.1109/TPAMI.2019.2929257
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献