Partial Image Active Annotation (PIAA): An Efficient Active Learning Technique Using Edge Information in Limited Data Scenarios

Author:

Kadir Md Abdul,Alam Hasan Md Tusfiqur,Srivastav Devansh,Profitlich Hans-Jürgen,Sonntag Daniel

Abstract

AbstractActive learning (AL) algorithms are increasingly being used to train models with limited data for annotation tasks. However, the selection of data for AL is a complex issue due to the restricted information on unseen data. To tackle this problem, a technique we refer to as Partial Image Active Annotation (PIAA) employs the edge information of unseen images as prior knowledge to gauge uncertainty. This uncertainty is determined by examining the divergence and entropy in model predictions across edges. The resulting measure is then applied to choose superpixels from input images for active annotation. We demonstrate the effectiveness of PIAA in multi-class Optical Coherence Tomography (OCT) segmentation tasks, attaining a Dice score comparable to state-of-the-art OCT segmentation algorithms trained with extensive annotated data. Concurrently, we successfully reduce annotation label costs to 12%, 2.3%, and 3%, respectively, across three publicly accessible datasets (Duke, AROI, and UMN).

Funder

Bundesministerium für Bildung und Forschung

Google Research

Carl von Ossietzky Universität Oldenburg

Publisher

Springer Science and Business Media LLC

Reference53 articles.

1. Yuan W, Lu D, Wei D, Ning M, Zheng Y (2022) Multiscale unsupervised retinal edema area segmentation in OCT images. In: Medical image computing and computer assisted intervention-MICCAI, 25th international conference, September 18–22, 2022, proceedings, part II. Springer, Singapore, pp 667–676

2. Sonntag D (2019) Medical and health systems. In: Oviatt SL, Schuller BW, Cohen PR, Sonntag D, Potamianos G, Krüger A (eds) The handbook of multimodal-multisensor interfaces: language processing, software, commercialization, and emerging directions-vol 3. Association for Computing Machinery. https://doi.org/10.1145/3233795.3233808

3. Nath V, Yang D, Roth HR, Xu D (2022) Warm start active learning with proxy labels and selection via semi-supervised fine-tuning. In: Medical image computing and computer assisted intervention-MICCAI, 25th international conference, September 18–22, 2022, proceedings, part VIII. Springer, Singapore, pp 297–308

4. Nguyen DMH, Ezema A, Nunnari F, Sonntag D (2020) A visually explainable learning system for skin lesion detection using multiscale input with attention U-Net. In: KI 2020: advances in artificial intelligence: 43rd German conference on AI, Bamberg, Germany, September 21–25, 2020, proceedings 43. Springer, pp 313–319

5. Farshad A, Yeganeh Y, Gehlbach P, Navab N (2022) Y-Net: a spatiospectral dual-encoder network for medical image segmentation. In: Medical image computing and computer assisted intervention-MICCAI, 25th international conference, September 18–22, 2022, proceedings, part II. Springer, Singapore, pp 582–592

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3