Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Andrieu C, Doucet A, Holenstein R (2010) Particle markov chain monte carlo methods. J R Stat Soc Ser B (Stat Methodol) 72(3):269–342
2. Bingham E, Chen J.P, Jankowiak M, Obermeyer F, Pradhan N, Karaletsos T, Singh R, Szerlip P, Horsfall P, Goodman N.D (2018) Pyro: Deep Universal Probabilistic Programming. arXiv preprint
arXiv:1810.09538
3. Borgström J, Gordon A.D, Greenberg M, Margetson J, Gael J.V (2011) Measure transformer semantics for Bayesian machine learning. In: European symposium on programming, pp. 77–96. Springer, Berlin.
https://doi.org/10.1007/978-3-642-19718-5_5
4. Carpenter B, Gelman A, Hoffman M.D, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A (2017) Stan: a probabilistic programming language. J Stat Softw.
https://doi.org/10.18637/jss.v076.i01
5. De Raedt L, Kersting K, Natarajan S, Poole D (2016) Statistical relational artificial intelligence: logic, probability, and computation. Synth Lect Artif Intell Mach Learn 10:1–189