Towards Explanatory Interactive Image Captioning Using Top-Down and Bottom-Up Features, Beam Search and Re-ranking

Author:

Biswas RajarshiORCID,Barz Michael,Sonntag Daniel

Abstract

AbstractImage captioning is a challenging multimodal task. Significant improvements could be obtained by deep learning. Yet, captions generated by humans are still considered better, which makes it an interesting application for interactive machine learning and explainable artificial intelligence methods. In this work, we aim at improving the performance and explainability of the state-of-the-art method Show, Attend and Tell by augmenting their attention mechanism using additional bottom-up features. We compute visual attention on the joint embedding space formed by the union of high-level features and the low-level features obtained from the object specific salient regions of the input image. We embed the content of bounding boxes from a pre-trained Mask R-CNN model. This delivers state-of-the-art performance, while it provides explanatory features. Further, we discuss how interactive model improvement can be realized through re-ranking caption candidates using beam search decoders and explanatory features. We show that interactive re-ranking of beam search candidates has the potential to outperform the state-of-the-art in image captioning.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference50 articles.

1. Anderson P, Fernando B, Johnson M, Gould S (2016) Spice: semantic propositional image caption evaluation. In: ECCV

2. Banerjee S, Lavie A (2005) Meteor: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, pp 65–72

3. Barz M, Sonntag D (2019) Incremental improvement of a question answering system by re-ranking answer candidates using machine learning. CoRR. arXiv:1908.10149

4. Biswas R (2019) Diverse image caption generation and automated human judgement through active learning. Master’s thesis, Saarland University

5. Biswas R, Mogadala A, Barz M, Sonntag D, Klakow D (2019) Automatic judgement of neural network-generated image captions. In: Statistical language and speech processing—7th international conference, SLSP 2019, Ljubljana, Slovenia, October 14–16, 2019, Proceedings, pp 261–272

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3