Comprehensible Extraction of Knowledge Bases for Learning Agents in Games

Author:

Apeldoorn DaanORCID

Abstract

AbstractThis dissertation abstract summarizes results of the thesis “Comprehensible Knowledge Base Extraction for Learning Agents - Practical Challenges and Applications in Games” (accepted as dissertation at the Department of Computer Science of TU Dortmund University, Germany). The thesis presents approaches that allow for the automated creation of knowledge bases from agent behavior learned in the context of games. The aims are twofold: (1) The creation of human-readable knowledge that can provide insights into what an agent learned, and (2) the investigation of how learning agents themselves can benefit from incorporating these approaches into their learning processes. Applications are presented, e.g., in the context of general video game playing. Moreover, an outlook on the InteKRator toolbox is provided which implements the most essential approaches in a more general context for the potential use in other domains (e.g. in medical informatics).

Funder

Carl-Zeiss-Stiftung

Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. Apeldoorn D (2023) Comprehensible Knowledge Base Extraction for Learning Agents – Practical Challengens and Applications in Games, Dissertation at TU Dortmund University. Mainz (publisher), Aachen. https://doi.org/10.25358/openscience-9303

2. Apeldoorn D, Dockhorn A (2021) Exception-tolerant hierarchical knowledge bases for forward model learning. IEEE Trans Games 13(3):249–262

3. Apeldoorn D, Hadidi L, Panholzer T (2021) Learning behavioral rules from multi-agent simulations for optimizing hospital processes. In: Chomphuwiset P, Kim J, Pawara P (eds) Multi-disciplinary Trends in Artificial Intelligence - 14th International Conference, MIWAI 2021, Virtual Event, July 2–3, 2021, Proceedings. Springer, Cham, pp 14–26

4. Apeldoorn D, Kern-Isberner G (2016) When should learning agents switch to explicit knowledge? In: GCAI 2016. 2nd Global Conference on Artificial Intelligence, EPiC Series in Computing, vol. 41, pp. 174–186. EasyChair Publications

5. Apeldoorn D, Kern-Isberner G (2017) Towards an understanding of what is learned: Extracting multi-abstraction-level knowledge from learning agents. In: V. Rus, Z. Markov (eds.) Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference, pp. 764–767. AAAI Press, Palo Alto, California

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3