Active and Incremental Learning with Weak Supervision

Author:

Brust Clemens-AlexanderORCID,Käding Christoph,Denzler Joachim

Abstract

AbstractLarge amounts of labeled training data are one of the main contributors to the great success that deep models have achieved in the past. Label acquisition for tasks other than benchmarks can pose a challenge due to requirements of both funding and expertise. By selecting unlabeled examples that are promising in terms of model improvement and only asking for respective labels, active learning can increase the efficiency of the labeling process in terms of time and cost. In this work, we describe combinations of an incremental learning scheme and methods of active learning. These allow for continuous exploration of newly observed unlabeled data. We describe selection criteria based on model uncertainty as well as expected model output change (EMOC). An object detection task is evaluated in a continuous exploration context on the PASCAL VOC dataset. We also validate a weakly supervised system based on active and incremental learning in a real-world biodiversity application where images from camera traps are analyzed. Labeling only 32 images by accepting or rejecting proposals generated by our method yields an increase in accuracy from 25.4 to 42.6%.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3