Auditive Emotion Recognition for Empathic AI-Assistants

Author:

Duwenbeck RoswithaORCID,Kirchner Elsa Andrea

Abstract

AbstractThis paper briefly introduces the Project “AudEeKA”, whose aim is to use speech and other bio signals for emotion recognition to improve remote, but also direct, healthcare. This article takes a look at use cases, goals and challenges, of researching and implementing a possible solution. To gain additional insights, the main-goal of the project is divided into multiple sub-goals, namely speech emotion recognition, stress detection and classification and emotion detection from physiological signals. Also, similar projects are considered and project-specific requirements stemming from use-cases introduced. Possible pitfalls and difficulties are outlined, which are mostly associated with datasets. They also emerge out of the requirements, their accompanying restrictions and first analyses in the area of speech emotion recognition, which are shortly presented and discussed. At the same time, first approaches to solutions for every sub-goal, which include the use of continual learning, and finally a draft of the planned architecture for the envisioned system, is presented. This draft presents a possible solution for combining all sub-goals, while reaching the main goal of a multimodal emotion recognition system.

Funder

Federal Ministry for Economic Affairs and Climate Action and the German Aerospace Center

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Reference50 articles.

1. Winnat C (2017) Deutsche aerzte nehmen sich rund sieben minuten zeit pro patient

2. Stewart MA (1995) Effective physician-patient communication and health outcomes: a review. CMAJ 152(9):1423

3. Nitschke JP, Bartz JA (2022) The association between acute stress & empathy: a systematic literature review. Neurosci Biobehav Rev 144:105003

4. Dugdale DC, Epstein R, Pantilat SZ (1999) Time and the patient–physician relationship. J Gen Intern Med 14:S34

5. Budde K, Dasch T, Kirchner E, Ohliger U, Schapranow M, Schmidt T, Schwerk A, Thoms J, Zahn T, Hiltawsky K (2020) Künstliche intelligenz: Patienten im fokus. Dtsch Arztebl 117(49):A–2407

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3