Cognitive Weeding: An Approach to Single-Plant Specific Weed Regulation

Author:

Niemeyer MarkORCID,Renz MarianORCID,Pukrop MarenORCID,Hagemann DavidORCID,Zurheide Tim,Di Marco Daniel,Höferlin Markus,Stark Philipp,Rahe Florian,Igelbrink Matthias,Jenz Mario,Jarmer ThomasORCID,Trautz Dieter,Stiene Stefan,Hertzberg JoachimORCID

Abstract

AbstractThis paper provides a comprehensive overview of the architecture required to implement selective weeding in arable farming, as developed within the Cognitive Weeding project. This end-to-end architecture begins with data acquisition utilizing drones, robots, or agricultural machinery, followed by data management, AI-based data annotation, knowledge-based inference to determine the necessary treatment, resulting in an application map for selective hoeing. The paper meticulously details the various components of the architecture and illustrates through examples how they are interconnected.

Funder

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)

Publisher

Springer Science and Business Media LLC

Reference24 articles.

1. Adeux G, Vieren E, Carlesi S, Bàrberi P, Munier-Jolain N, Cordeau S (2019) Mitigating crop yield losses through weed diversity. Nat Sust 2(11):1018–1026. https://doi.org/10.1038/s41893-019-0415-y

2. Ahngar T, Bahar I, Singh I, Bhat I, Shalimar I, Ss M, Tauseef I, Bhat A, Rashid I, Kashmir I, Bilal A, Lone B, Skuast J, Raja I, Saad I, Ahmad I, Corresponding A, Ahngar Ahmad L (2022) Artificial intelligence in agriculture, applications, benefits and challenges: A review. The Pharma Innovation Journal 11(3), 1407–1414

3. Allmendinger A, Spaeth M, Saile M, Peteinatos GG, Gerhards R (2022) Precision chemical weed management strategies: A review and a design of a new cnn-based modular spot sprayer. Agronomy 12(7):1620. https://doi.org/10.3390/agronomy12071620

4. Amazone: Amazone ux 5201 smartsprayer. https://amazone.de/de-de/produkte-digitale-loesungen/landtechnik/pflanzenschutztechnik/amazone-ux-5201-smartsprayer-965616. Accessed: 25.10.2023

5. Amend S, Brandt D, Di Marco D, Dipper T, Gässler G, Höferlin M, Gohlke M, Kesenheimer K, Lindner P, Leidenfrost R, Michaels A, Mugele T, Müller A, Riffel T, Sampangi Y, Winkler J (2019) Weed Management of the Future. Künstl Intell 33(4):411–415. https://doi.org/10.1007/s13218-019-00617-x

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI in Current and Future Agriculture;KI - Künstliche Intelligenz;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3