Bounds on convex bodies in pairwise intersecting Minkowski arrangement of order $$\mu $$

Author:

Földvári ViktóriaORCID

Abstract

AbstractThe $$\mu $$ μ -kernel of an o-symmetric convex body is obtained by shrinking the body about its center by a factor of $$\mu $$ μ . As a generalization of pairwise intersecting Minkowski arrangement of o-symmetric convex bodies, we can define the pairwise intersecting Minkowski arrangement of order $$\mu $$ μ . Here, the homothetic copies of an o-symmetric convex body are so that none of their interiors intersect the $$\mu $$ μ -kernel of any other. We give general upper and lower bounds on the cardinality of such arrangements, and study two special cases: For d-dimensional translates in classical pairwise intersecting Minkowski arrangement we prove that the sharp upper bound is $$3^d$$ 3 d . The case $$\mu =1$$ μ = 1 is the Bezdek–Pach Conjecture, which asserts that the maximum number of pairwise touching positive homothetic copies of a convex body in $$\mathbb R^d$$ R d is $$2^d$$ 2 d . We verify the conjecture on the plane, that is, when $$d=2$$ d = 2 . Indeed, we show that the number in question is four for any planar convex body.

Funder

Emberi Eroforrások Minisztériuma

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Reference21 articles.

1. Pach, M.J., Swanepoel, K.: Arrangements of homothets of a convex body. Mathematika 63(2), 696–710 (2017)

2. Arias-de Reyna, J., Ball, K., Villa, R.: Concentration of the distance in finite dimensional normed spaces. Mathematika 45, 245–252 (1998)

3. Bezdek, A., Kuperberg, K., Kuperberg, W.: Mutually contiguous translates of a plane disk. Duke Math. J. 78(1), 19–31 (1995)

4. Bezdek, K., Brass, P.: On k+ -neighbour packings and one-sided Hadwiger configurations. Beiträge Algebra Geom. 44(2), 493–498 (2003)

5. Bezdek, K., Connelly, R.: Intersection points. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 31(1988), 115–127 (1989)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On generalized Minkowski arrangements;Ars Mathematica Contemporanea;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3