1. Abatangelo, V.: A class of complete [(q + 8)/3]-arcs of PG(2,q), with q = 2 h and $${h (\geq 6)}$$ even Ars Combinatoria. 16, 103–111 (1983)
2. Ball S.: On small complete arcs in a finite plane. Discrete Math. 74, 29–34 (1997)
3. Bartoli D., Davydov A.A., Faina G., Marcugini S., Pambianco F.: On sizes of complete arcs in PG(2, q). Discrete Math. 312, 680–698 (2012)
4. Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: New upper bounds on the smallest size of a complete arc in the plane PG(2, q). In: Proc. XIII International Workshop on Algebraic and Combinational Coding Theory, ACCT2012, Pomorie, Bulgaria, pp. 60–66 (2012). http://www.moi.math.bas.bg/moiuser/~ACCT2012/b10.pdf
5. Bartoli, D., Davydov, A.A., Marcugini, S., Pambianco, F.: New type of estimate for the smallest size of complete arcs in PG(2, q). In: Proceedings of the XIII International Workshop on Algebraic and Combinational Coding Theory, ACCT2012, Pomorie, Bulgaria, pp. 67–72 (2012). http://www.moi.math.bas.bg/moiuser/~ACCT2012/b11.pdf