Ideal simplices and double-simplices, their non-orientable hyperbolic manifolds, cone manifolds and orbifolds with Dehn type surgeries and graphic analysis

Author:

Molnár E.,Prok I.,Szirmai J.ORCID

Abstract

AbstractIn connection with our works in Molnár (On isometries of space forms. Colloquia Math Soc János Bolyai 56 (1989). Differential geometry and its applications, Eger (Hungary), North-Holland Co., Amsterdam, 1992), Molnár (Acta Math Hung 59(1–2):175–216, 1992), Molnár (Beiträge zur Algebra und Geometrie 38/2:261–288, 1997) and Molnár et al. (in: Prékopa, Molnár (eds) Non-Euclidean geometries, János Bolyai memorial volume mathematics and its applications, Springer, Berlin, 2006), Molnár et al. (Symmetry Cult Sci 22(3–4):435–459, 2011) our computer program (Prok in Period Polytech Ser Mech Eng 36(3–4):299–316, 1992) found 5079 equivariance classes for combinatorial face pairings of the double-simplex. From this list we have chosen those 7 classes which can form charts for hyperbolic manifolds by double-simplices with ideal vertices. In such a way we have obtained the orientable manifold of Thurston (The geometry and topology of 3-manifolds (Lecture notes), Princeton University, Princeton, 1978), that of Fomenko–Matveev–Weeks (Fomenko and Matveev in Uspehi Mat Nauk 43:5–22, 1988; Weeks in Hyperbolic structures on three-manifolds. Ph.D. dissertation, Princeton, 1985) and a nonorientable manifold $$M_{c^2}$$ M c 2 with double simplex $${\widetilde{{\mathcal {D}}}}_1$$ D ~ 1 , seemingly known by Adams (J Lond Math Soc (2) 38:555–565, 1988), Adams and Sherman (Discret Comput Geom 6:135–153, 1991), Francis (Three-manifolds obtainable from two and three tetrahedra. Master Thesis, William College, 1987) as a 2-cusped one. This last one is represented for us in 5 non-equivariant double-simplex pairings. In this paper we are going to determine the possible Dehn type surgeries of $$M_{c^2}={\widetilde{{\mathcal {D}}}}_1$$ M c 2 = D ~ 1 , leading to compact hyperbolic cone manifolds and multiple tilings, especially orbifolds (simple tilings) with new fundamental domain to $${\widetilde{{\mathcal {D}}}}_1$$ D ~ 1 . Except the starting regular ideal double simplex, we do not get further surgery manifold. We compute volumes for starting examples and limit cases by Lobachevsky method. Our procedure will be illustrated by surgeries of the simpler analogue, the Gieseking manifold (1912) on the base of our previous work (Molnár et al. in Publ Math Debr, 2020), leading to new compact cone manifolds and orbifolds as well. Our new graphic analysis and tables inform you about more details. This paper is partly a survey discussing as new results on Gieseking manifold and on $$M_{c^2}$$ M c 2 as well, their cone manifolds and orbifolds which were partly published in Molnár et al. (Novi Sad J Math 29(3):187–197, 1999) and Molnár et al. (in: Karáné, Sachs, Schipp (eds) Proceedings of “Internationale Tagung über geometrie, algebra und analysis”, Strommer Gyula Nemzeti Emlékkonferencia, Balatonfüred-Budapest, Hungary, 1999), updated now to Memory of Professor Gyula Strommer. Our intention is to illustrate interactions of Algebra, Analysis and Geometry via algorithmic and computational methods in a classical field of Geometry and of Mathematics, in general.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3