The geometry of Hermitian self-orthogonal codes

Author:

Ball SimeonORCID,Vilar Ricard

Abstract

AbstractWe prove that if $$n >k^2$$ n > k 2 then a k-dimensional linear code of length n over $${\mathbb F}_{q^2}$$ F q 2 has a truncation which is linearly equivalent to a Hermitian self-orthogonal linear code. In the contrary case we prove that truncations of linear codes to codes equivalent to Hermitian self-orthogonal linear codes occur when the columns of a generator matrix of the code do not impose independent conditions on the space of Hermitian forms. In the case that there are more than n common zeros to the set of Hermitian forms which are zero on the columns of a generator matrix of the code, the additional zeros give the extension of the code to a code that has a truncation which is equivalent to a Hermitian self-orthogonal code.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Reference8 articles.

1. Ball, S., Vilar, R.: Determining when a truncated generalised Reed-Solomon code is Hermitian self-orthogonal, arXiv:2106.10180.

2. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over $$GF(4)$$. IEEE Trans. Inform. Theory 44, 1369–1387 (1998)

3. Galindo, C., Hernando, F.: On the generalization of the construction of quantum codes from Hermitian self-orthogonal codes, arxiv:2012.11998.

4. Glynn, D.G.: The non-classical 10-arc of $$PG(4,9)$$. Discrete Math. 59, 43–51 (1986)

5. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes, (available online at http://www.codetables.de).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Construction of Hermitian Self-Orthogonal Codes Over $$F_9$$ and Their Application;International Journal of Theoretical Physics;2024-09-02

2. Large Hermitian hull GRS codes of any given length;Designs, Codes and Cryptography;2024-03-04

3. Linear codes from arcs and quadrics;Designs, Codes and Cryptography;2023-06-12

4. New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes;Designs, Codes and Cryptography;2023-04-24

5. Many Non-Reed-Solomon Type MDS Codes From Arbitrary Genus Algebraic Curves;IEEE Transactions on Information Theory;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3