Finsler metrics and semi-symmetric compatible linear connections

Author:

Vincze CsabaORCID,Oláh Márk

Abstract

AbstractFinsler metrics are direct generalizations of Riemannian metrics such that the quadratic Riemannian indicatrices in the tangent spaces of a manifold are replaced by more general convex bodies as unit spheres. A linear connection on the base manifold is called compatible with the Finsler metric if the induced parallel transports preserve the Finslerian length of tangent vectors. Finsler manifolds admitting compatible linear connections are called generalized Berwald manifolds Wagner (Dokl Acad Sci USSR (N.S.) 39:3–5, 1943). Compatible linear connections are the solutions of the so-called compatibility equations containing the components of the torsion tensor as unknown quantities. Although there are some theoretical results for the solvability of the compatibility equations (monochromatic Finsler metrics Bartelmeß and Matveev (J Diff Geom Appl 58:264–271, 2018), extremal compatible linear connections and algorithmic solutions Vincze (Aequat Math 96:53–70, 2022)), it is very hard to solve them in general because compatible linear connections may or may not exist on a Finsler manifold and may or may not be unique. Therefore special cases are of special interest. One of them is the case of the so-called semi-symmetric compatible linear connection with decomposable torsion tensor. It is proved Vincze (Publ Math Debrecen 83(4):741–755, 2013 (see also Vincze (Euro J Math 3:1098–1171, 2017))) that such a compatible linear connection must be uniquely determined. The original proof is based on averaging in the sense that the 1-form in the decomposition of the torsion tensor can be expressed by integrating differential forms on the tangent manifold over the Finslerian indicatrices. The integral formulas are very difficult to compute in practice. In what follows we present a new proof for the uniqueness by using linear algebra and some basic facts about convex bodies. We present an explicit formula for the solution without integration. The method has a new contribution to the problem as well: necessary conditions of the solvability are formulated in terms of intrinsic equations without unknown quantities.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3