1. Bayard, P., Sánchez-Bringas, F.: Invariants and quasi-umbilicity of timelike surfaces in Minkowski space
$${\mathbb{R}}^{3,1}$$
R
3
,
1
. J. Geom. Phys. 62(7), 1697–1713 (2012)
2. Bayard, P., Patty, V., Sánchez-Bringas, F.: On Lorentzian surfaces in
$${\mathbb{R}}^{2,2}$$
R
2
,
2
. Proc. R. Soc. Edinb. Sect. A 147, 61–88 (2017)
3. Chen, B.Y.: Classification of minimal Lorentz surfaces in indefinite space forms with arbitrary codimension and arbitrary index. Publ. Math. Debr. 78, 485–503 (2011)
4. Clelland, J.: Totally quasi-umbilic timelike surfaces in
$$\mathbb{R}^{1,2}$$
R
1
,
2
. Asian J. Math. 16, 189–208 (2012)
5. Dillen, F., Fastenakels, J., Van der Veken, J.: Surfaces in
$$\mathbb{S}^2 \times \mathbb{R}$$
S
2
×
R
with a canonical principal direction. Ann. Glob. Anal. Geom. 35, 381–396 (2009)