1. Blaschke, W.: Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie. II Affine Differentialgeometrie. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1923)
2. Calabi, E., Olver, P.J., Tannenbaum, A.: Affine geometry, curve flows, and invariant numerical approximations. Adv. Math. 124(1), 154–196 (1996)
3. Chern, S.S.: Curves and surfaces in Euclidean space. In: Studies in Global Geometry and Analysis, pp. 16–56. Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J. (1967)
4. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Co., Inc, New York (1955)
5. Epstein, C.L.: The theorem of A. Schur in hyperbolic space. http://www.math.upenn.edu/~cle/papers/SchursLemma.pdf. Preprint, 46 pages (1985)