Regulation of nerve-evoked contractions of the murine vas deferens

Author:

Wong Pei Yee,Fong Zhihui,Hollywood Mark A.,Thornbury Keith D.,Sergeant Gerard P.

Abstract

AbstractStimulation of sympathetic nerves in the vas deferens yields biphasic contractions consisting of a rapid transient component resulting from activation of P2X1 receptors by ATP and a secondary sustained component mediated by activation of α1-adrenoceptors by noradrenaline. Noradrenaline can also potentiate the ATP-dependent contractions of the vas deferens, but the mechanisms underlying this effect are unclear. The purpose of the present study was to investigate the mechanisms underlying potentiation of transient contractions of the vas deferens induced by activation of α1-adrenoceptors. Contractions of the mouse vas deferens were induced by electric field stimulation (EFS). Delivery of brief (1s duration) pulses (4 Hz) yielded transient contractions that were inhibited tetrodotoxin (100 nM) and guanethidine (10 µM). α,β-meATP (10 µM), a P2X1R desensitising agent, reduced the amplitude of these responses by 65% and prazosin (100 nM), an α1-adrenoceptor antagonist, decreased mean contraction amplitude by 69%. Stimulation of α1-adrenoceptors with phenylephrine (3 µM) enhanced EFS and ATP-induced contractions and these effects were mimicked by the phorbol ester PDBu (1 µM), which activates PKC. The PKC inhibitor GF109203X (1 µM) prevented the stimulatory effects of PDBu on ATP-induced contractions of the vas deferens but only reduced the stimulatory effects of phenylephrine by 40%. PDBu increased the amplitude of ATP-induced currents recorded from freshly isolated vas deferens myocytes and HEK-293 cells expressing human P2X1Rs by 93%. This study indicates that: (1) potentiation of ATP-evoked contractions of the mouse vas deferens by α1-adrenoceptor activation were not fully blocked by the PKC inhibitor GF109203X and (2) that the stimulatory effect of PKC on ATP-induced contractions of the vas deferens is associated with enhanced P2X1R currents in vas deferens myocytes.

Funder

Dundalk Institute of Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3