Author:
Asadi Maryam,Fathzadeh Ali,Kerry Ruth,Ebrahimi-Khusfi Zohre,Taghizadeh-Mehrjardi Ruhollah
Abstract
AbstractEstimating sediment load of rivers is one of the major problems in river engineering that has been using various data mining algorithms and variables. It is desirable to obtain accurate estimates of sediment load while using techniques that limit computational intensity when datasets are large. This study investigates the usefulness of geo-morphometric factors and machine learning (ML) models for predicting suspended sediment load (SSL) in several river basins in Lorestan and Gilan, Iran. Six ML models, namely, multiple linear regression (MLR), artificial neural networks (ANN), K-nearest neighbor (KNN), Gaussian processes (GP), support vector machines (SVM), and evolutionary support vector machines (ESVM), were evaluated for estimating minimum and average SSL for the study regions. Geo-morphometric parameters and river discharge data were utilized as the main predictors in modeling process. In addition, an attribute reduction technique was applied to decrease the algorithm complexity and computational resources used. The results showed that all models estimated both target variables well. However, the optimal models for predicting average sediment load and minimum sediment load were the GP and ESVM models, respectively.
Funder
alexander von humboldt-stiftung
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献