DialGNN: Heterogeneous Graph Neural Networks for Dialogue Classification

Author:

Yan Yan,Zhang Bo-Wen,Min Peng-hao,Ding Guan-wen,Liu Jun-yuan

Abstract

AbstractDialogue systems have attracted growing research interests due to its widespread applications in various domains. However, most research work focus on sentence-level intent recognition to interpret user utterances in dialogue systems, while the comprehension of the whole documents has not attracted sufficient attention. In this paper, we propose DialGNN, a heterogeneous graph neural network framework tailored for the problem of dialogue classification which takes the entire dialogue as input. Specifically, a heterogeneous graph is constructed with nodes in different levels of semantic granularity. The graph framework allows flexible integration of various pre-trained language representation models, such as BERT and its variants, which endows DialGNN with powerful text representational capabilities. DialGNN outperforms on CM and ECS datasets, which demonstrates robustness and the effectiveness. Specifically, our model achieves a notable enhancement in performance, optimizing the classification of document-level dialogue text. The implementation of DialGNN and related data are shared through https://github.com/821code/DialGNN.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3