Super-Resolution Based Automatic Diagnosis of Retinal Disease Detection for Clinical Applications
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,General Neuroscience,Software
Link
https://link.springer.com/content/pdf/10.1007/s11063-020-10292-x.pdf
Reference34 articles.
1. Gharabaghi S, Dhaneshvar S, Sedaaghi MH (2012) Retinal image registration using geometrical features. J Digit Imaging 26(2):248–258
2. Mahapatra Dwarikanath, Behzad Rahil (2019) Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput Med Imaging Graph 71:30–39
3. Das Vineeta, Samarendra Prabin (2019) A novel diagnostic information based framework for super resolution of retinal fundus images. Comput Med Imaging Graph 72:22–33
4. Hernandez-Matas C, Zabulis X, Antonis AA (2015) Retinal image registration based on key point correspondences, spherical eye modelling and camera pose estimation. In: 2015 annual international conference of the IEEE Engineering Medicine and Biology Society (EMBC), pp 5650–5654
5. Nagunerii S, Benjamin F, Heinz H, Mike H (2012) Three-dimensional tomography super-resolution fluorescence imaging of serially sectioned thick samples. PLoS ONE 7(5)
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Feature subset selection through nature inspired computing for efficient glaucoma classification from fundus images;Multimedia Tools and Applications;2024-02-23
2. Automatic Detection of AMD and DME Retinal Pathologies Using Deep Learning;International Journal of Biomedical Imaging;2023-11-24
3. Deep Feature Fusion Network for Compressed Video Super-Resolution;Neural Processing Letters;2022-04-28
4. VolumeNet: A Lightweight Parallel Network for Super-Resolution of MR and CT Volumetric Data;IEEE Transactions on Image Processing;2021
5. Joint Learning of Multi-level Tasks for Diabetic Retinopathy Grading on Low-resolution Fundus Images;IEEE Journal of Biomedical and Health Informatics;2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3