A Support Vector Based Hybrid Forecasting Model for Chaotic Time Series: Spare Part Consumption Prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,General Neuroscience,Software
Link
https://link.springer.com/content/pdf/10.1007/s11063-022-10986-4.pdf
Reference36 articles.
1. Dombi J, Jónás T, Eszter Tóth Z (2018) Modeling and long-term forecasting demand in spare parts logistics businesses. Int J Prod Econ. https://doi.org/10.1016/j.ijpe.2018.04.015
2. Hua Z, Zhang B (2006) A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts. Appl Math Comput 181(2):1035–1048. https://doi.org/10.1016/j.amc.2006.01.064
3. Guo F, Diao J, Zhao Q, Wang D, Sun Q (2017) A double-level combination approach for demand forecasting of repairable airplane spare parts based on turnover data. Comput Ind Eng. https://doi.org/10.1016/j.cie.2017.05.002
4. McGovern A, Rosendahl D, Brown R (2011) Identifying predictive multi-dimensional time series motifs: an application to severe weather prediction. Data Min Knowl Disc 22(1–2):232–258. https://doi.org/10.1007/s10618-010-0193-7
5. Bozic M, Stojanovic M, Stajic Z (2013) Mutual information-based inputs selection for electric load time series forecasting. Entropy 15(3):926–942. https://doi.org/10.3390/e15030926
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of Aviation Spare Parts Consumption Based on Kepler-NeuralProphet Modeling;2024 4th International Conference on Computer, Control and Robotics (ICCCR);2024-04-19
2. A new hybrid forecasting method for spare part inventory management using heuristics and bootstrapping;Decision Analytics Journal;2024-03
3. Based on the Improved PSO-TPA-LSTM Model Chaotic Time Series Prediction;Atmosphere;2023-11-17
4. Dirichlet Graph Convolution Coupled Neural Differential Equation for Spatio-temporal Time Series Prediction;Neural Processing Letters;2023-10-09
5. Cuckoo search algorithm with ensemble strategy and the application in chaotic time series prediction;2023-08-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3