FEASE: Feature Selection and Enhancement Networks for Action Recognition

Author:

Zhou Lu,Lu Yuanyao,Jiang Haiyang

Abstract

AbstractReinforcement of motor features is necessary in action recognition tasks. In this work, we propose an efficient feature reinforcement model, termed as Feature Selection and Enhancement Networks (FEASE-Net). The core of our FEASE-Net is the use of the FEASE module to adaptively capture input features at multi-scales and reinforce them globally. FEASE module is composed of two sub-module, Feature Selection (FS) and Feature Enhancement (FE). The FS focuses on adaptive attention and selection of input features through a multi-scale structure with an attention mechanism, and FE employs channel attention to enhance the global useful feature information. To assess the effectiveness of FEASE-Net, we undertake a series of extensive experiments on two benchmark datasets, namely Kinetics 400 and Something-Something V2. Our proposed FEASE-Net can achieve a competitive performance compared with previous state-of-the-art methods that use similar backbones.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference58 articles.

1. Feichtenhofer C, Fan H, Malik J, He K (2018) Slowfast networks for video recognition. IEEE/CVF Int Conf Comput Vision (ICCV) 2019:6201–6210

2. Koohzadi M, Charkari NM (2020) A context based deep temporal embedding network in action recognition. Neural Process Lett 52:187–220

3. Li B, Pan Y-T, Liu R, Zhu Y (2023) Separately guided context-aware network for weakly supervised temporal action detection. Neural Process Lett. https://doi.org/10.1007/s11063-022-11138-4

4. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. IEEE Conf Comput Visi Patt Recognit 2014:1725–1732

5. Feichtenhofer C, Pinz A, Wildes RP (2017) Spatiotemporal multiplier networks for video action recognition. IEEE Conf Comput Vision Patt Recognit (CVPR) 2017:7445–7454

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient spatio-temporal network for action recognition;Journal of Real-Time Image Processing;2024-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3