Abstract
AbstractRecognizing the pivotal role of choosing an appropriate distance metric in designing the clustering algorithm, our focus is on innovating the k-means method by redefining the distance metric in its distortion. In this study, we introduce a novel k-means clustering algorithm utilizing a distance metric derived from the $$\ell _p$$
ℓ
p
quasi-norm with $$p\in (0,1)$$
p
∈
(
0
,
1
)
. Through an illustrative example, we showcase the advantageous properties of the proposed distance metric compared to commonly used alternatives for revealing natural groupings in data. Subsequently, we present a novel k-means type heuristic by integrating this sub-one quasi-norm-based distance, offer a step-by-step iterative relocation scheme, and prove the convergence to the Kuhn-Tucker point. Finally, we empirically validate the effectiveness of our clustering method through experiments on synthetic and real-life datasets, both in their original form and with additional noise introduced. We also investigate the performance of the proposed method as a subroutine in a deep learning clustering algorithm. Our results demonstrate the efficacy of the proposed k-means algorithm in capturing distinctive patterns exhibited by certain data types.
Funder
National Science Fund for Young Scholars
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献