Category-Aware Saliency Enhance Learning Based on CLIP for Weakly Supervised Salient Object Detection

Author:

Zhang Yunde,Zhang Zhili,Liu Tianshan,Kong Jun

Abstract

AbstractWeakly supervised salient object detection (SOD) using image-level category labels has been proposed to reduce the annotation cost of pixel-level labels. However, existing methods mostly train a classification network to generate a class activation map, which suffers from coarse localization and difficult pseudo-label updating. To address these issues, we propose a novel Category-aware Saliency Enhance Learning (CSEL) method based on contrastive vision-language pre-training (CLIP), which can perform image-text classification and pseudo-label updating simultaneously. Our proposed method transforms image-text classification into pixel-text matching and generates a category-aware saliency map, which is evaluated by the classification accuracy. Moreover, CSEL assesses the quality of the category-aware saliency map and the pseudo saliency map, and uses the quality confidence scores as weights to update the pseudo labels. The two maps mutually enhance each other to guide the pseudo saliency map in the correct direction. Our SOD network can be trained jointly under the supervision of the updated pseudo saliency maps. We test our model on various well-known RGB-D and RGB SOD datasets. Our model achieves an S-measure of 87.6$$\%$$ % on the RGB-D NLPR dataset and 84.3$$\%$$ % on the RGB ECSSD dataset. Additionally, we obtain satisfactory performance on the weakly supervised E-measure, F-measure, and mean absolute error metrics for other datasets. These results demonstrate the effectiveness of our model.

Funder

Scientific and Technological Aid Program of Xinjiang

111 Projects under Grant

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3