Combining Swin Transformer and Attention-Weighted Fusion for Scene Text Detection

Author:

Li Xianguo,Yao Xingchen,Liu Yi

Abstract

AbstractThe existing text detection algorithms based on Convolutional Neural Networks (CNN) commonly have the problems of insufficient receptive fields and inadequate extraction of spatial positional information, which limit their ability to detect large-scale variation text instances, long-distance and wide-spaced text instances as well as effectively distinguish complex background textures. To address the above problems, in this paper, a scene text detection algorithm combining Swin Transformer and attention-weighted fusion is proposed. Firstly, an attention-weighted fusion (AWF) module is proposed, which embeds a modified coordinate attention module (CAM) in the feature pyramid network (FPN). This module learns spatial positional weights of foreground information in different-scale features while suppressing redundant background information. As a result, the fused features are more focused on the text regions, enhancing the localization ability for text regions and boundaries. Secondly, the window-based self-attention mechanism of the Swin Transformer is utilized to achieve global feature perception on the fused features of the pyramid network. This compensates for the insufficient receptive fields of CNN and enhances the representation capability of global contextual features, thereby further improving the performance of text detection. Experimental results demonstrate that the proposed algorithm achieves competitive performance on three public datasets, namely ICDAR2015, MSRA-TD500, and Total-Text, with F-measure reaching 87.9%, 91.4%, and 86.7%, respectively. Code is available at: https://github.com/xgli411/ST-AWFNet.

Funder

Tianjin "Project+Team" Key Training Special Project

Science and Technology Support of Tianjin Key Research and the Development Plan Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3