Gradient-Based Training of Gaussian Mixture Models for High-Dimensional Streaming Data

Author:

Gepperth AlexanderORCID,Pfülb BenediktORCID

Abstract

AbstractWe present an approach for efficiently training Gaussian Mixture Model (GMM) by Stochastic Gradient Descent (SGD) with non-stationary, high-dimensional streaming data. Our training scheme does not require data-driven parameter initialization (e.g., k-means) and can thus be trained based on a random initial state. Furthermore, the approach allows mini-batch sizes as low as 1, which are typical for streaming-data settings. Major problems in such settings are undesirable local optima during early training phases and numerical instabilities due to high data dimensionalities. We introduce an adaptive annealing procedure to address the first problem, whereas numerical instabilities are eliminated by an exponential-free approximation to the standard GMM log-likelihood. Experiments on a variety of visual and non-visual benchmarks show that our SGD approach can be trained completely without, for instance, k-means based centroid initialization. It also compares favorably to an online variant of Expectation-Maximization (EM)—stochastic EM (sEM), which it outperforms by a large margin for very high-dimensional data.

Funder

Hochschule Fulda

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,General Neuroscience,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adiabatic replay for continual learning;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. A Differentiable Gaussian Prototype Layer for Explainable Fruit Segmentation;2023 IEEE International Conference on Image Processing (ICIP);2023-10-08

3. A Review on Cyber Resilience Model in Small and Medium Enterprises;2022 4th International Conference on Smart Sensors and Application (ICSSA);2022-07-26

4. A Study of Continual Learning Methods for Q-Learning;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

5. Large-scale gradient-based training of Mixtures of Factor Analyzers;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3