Sparse Embedded Convolution Based Dual Feature Aggregation 3D Object Detection Network

Author:

Li Hai-Sheng,Lu Yan-Ling

Abstract

AbstractThe algorithm design of compatible detection speed and accuracy based on LiDAR point clouds is a challenging issue in various practical applications of 3D object detection, including the field of autonomous driving. This paper designs a single-stage object detection algorithm that is lightweight and compatible with detection speed and accuracy for the above issue. To achieve these objectives, we propose a framework for a 3D object detection algorithm using a single-stage detection network as the backbone network. Firstly, we design a dual feature extraction module to reduce the occurrence of vehicle miss and error detection problems. Then, we use a multi-scale feature fusion scheme to fuse feature information with different scales. Furthermore, we design a data enhancement scheme suitable for this network architecture. Experimental results in the KITTI dataset show that the proposed method achieves improvement ratios of 38.5% for the detection speed and 2.88% $$\sim $$ 13.65% in terms of the average precision of vehicle detection compared to the existing algorithm based on single-stage object detection (SECOND).

Funder

Science and Technology Project of Guangxi

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Yan Y, Mao Y, Li B (2018) SECOND: sparsely embedded convolutional detection. Sensors 18(10):3337

2. He C, Zeng H, Huang J, et al (2020) Structure aware single-stage 3D object detection from point cloud. In: IEEE conference on computer vision and pattern recognition, pp 11873-11882

3. Liang D, Xiaoqing Y, Xiao T, et al (2020) Associate-3Ddet: perceptual-to-conceptual association for 3D point cloud object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 13329-13338

4. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE conference on computer vision and pattern recognition, pp 3354-3361

5. Shaoshuai S, Xiaogang W, Hongsheng L (2019) PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 770-779

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3