Human Gait Recognition Based on Frontal-View Walking Sequences Using Multi-modal Feature Representations and Learning

Author:

Deng Muqing,Zhong Zebang,Zou Yi,Wang Yanjiao,Wang Kaiwei,Liao Junrong

Abstract

AbstractDespite that much progress has been reported in gait recognition, most of these existing works adopt lateral-view parameters as gait features, which requires large area of data collection environment and limits the applications of gait recognition in real-world practice. In this paper, we adopt frontal-view walking sequences rather than lateral-view sequences and propose a new gait recognition method based on multi-modal feature representations and learning. Specifically, we characterize walking sequences with two different kinds of frontal-view gait features representations, including holistic silhouette and dense optical flow. Pedestrian regions extraction is achieved by an improved YOLOv7 algorithm called Gait-YOLO algorithm to eliminate the effects of background interference. Multi-modal fusion module (MFM) is proposed to explore the intrinsic connections between silhouette and dense optical flow features by using squeeze and excitation operations at the channel and spatial levels. Gait feature encoder is further used to extract global walking characteristics, enabling efficient multi-modal information fusion. To validate the efficacy of the proposed method, we conduct experiments on CASIA-B and OUMVLP gait databases and compare performance of our proposed method with other existing state-of-the-art gait recognition methods.

Funder

Guangzhou Basic and Applied Basic Research Project

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Open Foundation of the Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3