Unsupervised Domain Adaptation Depth Estimation Based on Self-attention Mechanism and Edge Consistency Constraints

Author:

Guo Peng,Pan Shuguo,Hu Peng,Pei Ling,Yu Baoguo

Abstract

AbstractIn the unsupervised domain adaptation (UDA) (Akada et al. Self-supervised learning of domain invariant features for depth estimation, in: 2022 IEEE/CVF winter conference on applications of computer vision (WACV), pp 3377–3387 (2022). 10.1109/WACV51458.2022.00107) depth estimation task, a new adaptive approach is to use the bidirectional transformation network to transfer the style between the target and source domain inputs, and then train the depth estimation network in their respective domains. However, the domain adaptation process and the style transfer may result in defects and biases, often leading to depth holes and instance edge depth missing in the target domain’s depth output. To address these issues, We propose a training network that has been improved in terms of model structure and supervision constraints. First, we introduce a edge-guided self-attention mechanism in the task network of each domain to enhance the network’s attention to high-frequency edge features, maintain clear boundaries and fill in missing areas of depth. Furthermore, we utilize an edge detection algorithm to extract edge features from the input of the target domain. Then we establish edge consistency constraints between inter-domain entities in order to narrow the gap between domains and make domain-to-domain transfers easier. Our experimental demonstrate that our proposed method effectively solve the aforementioned problem, resulting in a higher quality depth map and outperforming existing state-of-the-art methods.

Funder

National Key Research and Development Program of China

Research Fund of Ministry of Education of China and China Mobile

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3