1. Abdelzad V, Czarnecki K, Salay R, et al. (2019) Detecting out-of-distribution inputs in deep neural networks using an early-layer output arXiv:1910.10307
2. An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction probability. Special Lect IE 2(1):1–18
3. Bengio Y, Lamblin P, Popovici D et al (2006) Greedy layer-wise training of deep networks. In: Schölkopf B, Platt J, Hoffman T (eds) Advances in neural information processing systems (NIPS2006). MIT Press, USA, pp 153–160
4. Carlini N, Wagner D (2017) Adversarial examples are not easily detected: bypassing ten detection methods In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security (AISec-2017), p 3-14
5. Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks In: Proceedings of 2017 IEEE Symposium on Security and Privacy (IEEE S & P-2017), pp 39–57