A Uniform Framework for Anomaly Detection in Deep Neural Networks

Author:

Zhao Fangzhen,Zhang ChenyiORCID,Dong Naipeng,You Zefeng,Wu Zhenxin

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,General Neuroscience,Software

Reference50 articles.

1. Abdelzad V, Czarnecki K, Salay R, et al. (2019) Detecting out-of-distribution inputs in deep neural networks using an early-layer output arXiv:1910.10307

2. An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction probability. Special Lect IE 2(1):1–18

3. Bengio Y, Lamblin P, Popovici D et al (2006) Greedy layer-wise training of deep networks. In: Schölkopf B, Platt J, Hoffman T (eds) Advances in neural information processing systems (NIPS2006). MIT Press, USA, pp 153–160

4. Carlini N, Wagner D (2017) Adversarial examples are not easily detected: bypassing ten detection methods In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security (AISec-2017), p 3-14

5. Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks In: Proceedings of 2017 IEEE Symposium on Security and Privacy (IEEE S & P-2017), pp 39–57

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SkelEx and BoundEx - Geometrical Framework for Interpretable ReLU Neural Networks;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Dr. DNA: Combating Silent Data Corruptions in Deep Learning using Distribution of Neuron Activations;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

3. A Survey on an Emerging Safety Challenge for Autonomous Vehicles: Safety of the Intended Functionality;Engineering;2024-02

4. Adversarial Detection from Derived Models;International Journal of Pattern Recognition and Artificial Intelligence;2023-12-30

5. Graph Structure Based Vehicle Trajectory Prediction;2023 4th International Conference on Computer, Big Data and Artificial Intelligence (ICCBD+AI);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3